Emission enhancement and lifetime modification of phosphorescence on silver nanoparticle aggregates.

نویسندگان

  • Ron Gill
  • Lijin Tian
  • Herbert van Amerongen
  • Vinod Subramaniam
چکیده

Silver nanoparticle aggregates have been shown to support very large enhancements of fluorescence intensity from organic dye molecules coupled with an extreme reduction in observed fluorescence lifetimes. Here we show that for the same type of aggregates, similar enhancement factors (~75× in intensity and ~3400× in lifetime compared to the native radiative lifetime) are observed for a ruthenium-based phosphorescent dye (when taking into account the effect of charge and the excitation/emission wavelengths). Additionally, the inherently long native phosphorescence lifetimes practically enable more detailed analyses of the distribution of lifetimes (compared with the case with fluorescence decays). It was thus possible to unambiguously observe the deviation from mono-exponential decay which we attribute to emission from a distribution of fluorophores with different lifetimes, as we could expect from a random aggregation process. We believe that combining phosphorescent dyes with plasmonic structures, even down to the single dye level, will offer a convenient approach to better characterize plasmonic systems in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic studies of liquid solutions of R6G laser dye and Ag nanoparticle aggregates

We have found that R6G laser dye in a concentration of 0.1 g l−1 mixed with a solution of aggregated silver nanoparticles exhibits a new emission band with a maximum at 612 nm. This band does not exist in pure dye of comparable concentration or in a mixture of dye with a solution of single silver nanoparticles. A qualitatively similar red-shifted emission band is observed in pure R6G dye at ver...

متن کامل

Spatially resolved enhancement of fluorescence and Raman scattering by Ag nanoparticle arrays

Highly ordered periodic arrays of silver nanoparticles have been fabricated which exhibit surface plasmon resonances in the visible spectrum. We demonstrate the ability of these structures to alter the fluorescence properties of vicinal dye molecules by providing an additional radiative decay channel. Using fluorescence lifetime imaging microscopy, we have created high resolution spatial maps o...

متن کامل

Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays.

Two-dimensional arrays of silver nanocylinders fabricated by electron-beam lithography are used to demonstrate plasmon-enhanced near-green light emission from nitride semiconductor quantum wells. Several arrays with different nanoparticle dimensions are employed, designed to yield collective plasmonic resonances in the spectral vicinity of the emission wavelength and at the same time to provide...

متن کامل

Submicrometer spatial resolution of metal-enhanced fluorescence.

Enhanced fluorescence emission intensity from fluorescein was observed on glass slides covered with thin films of silver nanoparticles using a confocal laser-scanning microscope. The silver nanoparticle film increased the emission intensity of fluorescein by an average of at least three-fold in the area studied. Statistics are given on the enhancement of individual areas of the silver particle ...

متن کامل

A spectroscopic probe of stacking interactions between nucleic acid bases and tryptophan residues of proteins.

The external heavy atom effect of mercury on the spectroscopic properties of the indole ring has been used to investigate stacking interactions of tryptophan with mercurinucleotides in mixed aggregates formed in frozen aqueous solutions as well as in oligopeptide-polynucleotide complexes. This effect is characterized at 77 K by a quenching of the tryptophan fluorescence, an enhancement of the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 38  شماره 

صفحات  -

تاریخ انتشار 2013